79 research outputs found

    Mechanisms of oligodendrocyte regeneration from ventricular-subventricular zone-derived progenitor cells in white matter diseases

    Get PDF
    White matter dysfunction is an important part of many CNS disorders including multiple sclerosis (MS) and vascular dementia. Within injured areas, myelin loss and oligodendrocyte death may trigger endogenous attempts at regeneration. However, during disease progression, remyelination failure may eventually occur due to impaired survival/proliferation, migration/recruitment, and differentiation of oligodendrocyte precursor cells (OPCs). The ventricular-subventricular zone (V-SVZ) and the subgranular zone (SGZ) are the main sources of neural stem/progenitor cells (NSPCs), which can give rise to neurons as well as OPCs. Under normal conditions in the adult brain, the V-SVZ progenitors generate a large number of neurons with a small number of oligodendrocyte lineage cells. However, after demyelination, the fate of V-SVZ-derived progenitor cells shifts from neurons to OPCs, and these newly generated OPCs migrate to the demyelinating lesions to ease white matter damage. In this mini-review, we will summarize the recent studies on extrinsic (e.g., vasculature, extracellular matrix (ECM), cerebrospinal fluid (CSF)) and intrinsic (e.g., transcription factors, epigenetic modifiers) factors, which mediate oligodendrocyte generation from the V-SVZ progenitor cells. A deeper understanding of the mechanisms that regulate the fate of V-SVZ progenitor cells may lead to new therapeutic approaches for ameliorating white matter dysfunction and damage in CNS disorders

    A case of reversible cerebral vasoconstriction syndrome associated with anti-phospholipid antibody syndrome and systemic lupus erythematosus

    Get PDF
    The pathomechanisms and treatment strategy for rare presentations of reversible cerebral vasoconstriction syndrome (RCVS) with anti-phospholipid syndrome (APS) remain to be determined. We report a 67-year-old woman with APS who presented with ischemic stroke due to RCVS. She was treated with low-dose cilostazol and lomerizine hydrochloride, which resulted in functional improvement and recovery of vasoconstriction within 12 weeks. Her plasma endothelin-1 level was decreased after relief of vasoconstriction, compared with the pre-treatment condition. Increased plasma endothelin-1 may be related to the underlying pathomechanism of RCVS with APS, against which cilostazol and lomerizine hydrochloride could be effective

    Clinical Application of MPRAGE Wave Controlled Aliasing in Parallel Imaging (Wave-CAIPI): A Comparative Study with MPRAGE GRAPPA

    Get PDF
    PURPOSE: To compare reliability and elucidate clinical application of magnetization-prepared rapid gradient-echo (MPRAGE) with 9-fold acceleration by using wave-controlled aliasing in parallel imaging (Wave-CAIPI 3 × 3) in comparison to conventional MPRAGE accelerated by using generalized autocalibrating partially parallel acquisition (GRAPPA) 2 × 1. METHODS: A total of 26 healthy volunteers and 33 patients were included in this study. Subjects were scanned with two MPRAGEs, GRAPPA 2 × 1 and Wave-CAIPI 3 × 3 acquired in 5 min 21 s and 1 min 42 s, respectively, on a 3T MR scanner. Healthy volunteers underwent additional two MPRAGEs (CAIPI 3 × 3 and GRAPPA 3 × 3). The image quality of the four MPRAGEs was visually evaluated with a 5-point scale in healthy volunteers, and the SNR of four MPRAGEs was also calculated by measuring the phantom 10 times with each MPRAGE. Based on the results of the visual evaluation, voxel-based morphometry (VBM) analyses, including subfield analysis, were performed only for GRAPPA 2 × 1 and Wave-CAIPI 3 × 3. Correlation of segmentation results between GRAPPA 2 × 1 and Wave-CAIPI 3 × 3 was assessed. RESULTS: In visual evaluations, scores for MPRAGE GRAPPA 2 × 1 (mean rank: 4.00) were significantly better than those for Wave-CAIPI 3 × 3 (mean rank: 3.00), CAIPI 3 × 3 (mean rank: 1.83), and GRAPPA 3 × 3 (mean rank: 1.17), and scores for Wave-CAIPI 3×3 were significantly better than those for CAIPI 3 × 3 and GRAPPA 3 × 3. Image noise was evident at the center for additional MPRAGE CAIPI 3 × 3 and GRAPPA 3 × 3. The correlation of segmentation results between GRAPPA 2 × 1 and Wave-CAIPI 3 × 3 was higher than 0.85 in all VOIs except globus pallidus. Subfield analysis of hippocampus also showed a high correlation between GRAPPA 2 × 1 and Wave-CAIPI 3 × 3. CONCLUSION: MPRAGE Wave-CAIPI 3 × 3 shows relatively better contrast, despite of its short scan time of 1 min 42 s. The volumes derived from automated segmentation of MPRAGE Wave-CAIPI are considered to be reliable measures

    The Influence of Chronic Cerebral Hypoperfusion on Cognitive Function and Amyloid β Metabolism in APP Overexpressing Mice

    Get PDF
    Cognitive impairment resulting from cerebrovascular insufficiency has been termed vascular cognitive impairment, and is generally accepted to be distinct from Alzheimer's disease resulting from a neurodegenerative process. However, it is clear that this simple dichotomy may need revision in light of the apparent occurrence of several shared features between Alzheimer's disease and vascular cognitive impairment. Nevertheless, it still remains largely unknown whether the burden of vascular- and Alzheimer-type neuropathology are independent or interdependent. Therefore, we investigated whether chronic cerebral hypoperfusion influences cognitive ability or amyloid β deposition in amyloid precursor protein (APP) overexpressing transgenic mice

    Role of Hypoxic OPC in Angiogenesis

    Get PDF
    Background-Oligodendrocyte precursor cells (OPCs) regulate neuronal, glial, and vascular systems in diverse ways and display phenotypic heterogeneity beyond their established role as a reservoir for mature oligodendrocytes. However, the detailed phenotypic changes of OPCs after cerebral ischemia remain largely unknown. Here, we aimed to investigate the roles of reactive OPCs in the ischemic brain. Methods and Results-The behavior of OPCs was evaluated in a mouse model of ischemic stroke produced by transient middle cerebral artery occlusion in vivo. For in vitro experiments, the phenotypic change of OPCs after oxygen glucose derivation was examined using a primary rat OPC culture. Furthermore, the therapeutic potential of hypoxic OPCs was evaluated in a mouse model of middle cerebral artery occlusion in vivo. Perivascular OPCs in the cerebral cortex were increased alongside poststroke angiogenesis in a mouse model of middle cerebral artery occlusion. In vitro RNA‐seq analysis revealed that primary cultured OPCs increased the gene expression of numerous pro‐angiogenic factors after oxygen glucose derivation. Hypoxic OPCs secreted a greater amount of pro‐angiogenic factors, such as vascular endothelial growth factor and angiopoietin‐1, compared with normoxic OPCs. Hypoxic OPC‐derived conditioned media increased the viability and tube formation of endothelial cells. In vivo studies also demonstrated that 5 consecutive daily treatments with hypoxic OPC‐conditioned media, beginning 2 days after middle cerebral artery occlusion, facilitated poststroke angiogenesis, alleviated infarct volume, and improved functional disabilities. Conclusions-Following cerebral ischemia, the phenotype of OPCs in the cerebral cortex shifts from the parenchymal subtype to the perivascular subtype, which can promote angiogenesis. The optimal use of hypoxic OPCs secretome would provide a novel therapeutic option for stroke

    Phosphodiesterase III inhibitor promotes drainage of cerebrovascular β-amyloid

    Get PDF
    The predominant action of cilostazol on Aβ metabolism is likely to facilitate Aβ clearance due to the sustained cerebrovascular function in vivo. Our findings mechanistically demonstrate that cilostazol is a promising therapeutic approach for AD and CAA

    CUL2-mediated clearance of misfolded TDP-43 is paradoxically affected by VHL in oligodendrocytes in ALS

    Get PDF
    The molecular machinery responsible for cytosolic accumulation of misfolded TDP-43 in amyotrophic lateral sclerosis (ALS) remains elusive. Here we identified a cullin-2 (CUL2) RING complex as a novel ubiquitin ligase for fragmented forms of TDP-43. The von Hippel Lindau protein (VHL), a substrate binding component of the complex, preferentially recognized misfolded TDP-43 at Glu246 in RNA-recognition motif 2. Recombinant full-length TDP-43 was structurally fragile and readily cleaved, suggesting that misfolded TDP-43 is cleared by VHL/CUL2 in a step-wise manner via fragmentation. Surprisingly, excess VHL stabilized and led to inclusion formation of TDP-43, as well as mutant SOD1, at the juxtanuclear protein quality control center. Moreover, TDP-43 knockdown elevated VHL expression in cultured cells, implying an aberrant interaction between VHL and mislocalized TDP-43 in ALS. Finally, cytoplasmic inclusions especially in oligodendrocytes in ALS spinal cords were immunoreactive to both phosphorylated TDP-43 and VHL. Thus, our results suggest that an imbalance in VHL and CUL2 may underlie oligodendrocyte dysfunction in ALS, and highlight CUL2 E3 ligase emerges as a novel therapeutic potential for ALS

    Case report: A novel approach of closed-loop brain stimulation combined with robot gait training in post-stroke gait disturbance

    Get PDF
    Most post-stroke patients have long-lasting gait disturbances that reduce their daily activities. They often show impaired hip and knee joint flexion and ankle dorsiflexion of the lower limbs during the swing phase of gait, which is controlled by the corticospinal tract from the primary motor cortex (M1). Recently, we reported that gait-synchronized closed-loop brain stimulation targeting swing phase-related activity in the affected M1 can improve gait function in post-stroke patients. Subsequently, a gait-training robot (Orthobot®) was developed that could assist lower-limb joint movements during the swing phase of gait. Therefore, we investigated whether gait-synchronized closed-loop brain stimulation combined with robot-assisted training targeting the swing phase could enhance the recovery of post-stroke gait disturbance. A 57-year-old female patient with chronic post-stroke hemiparesis underwent closed-loop brain stimulation combined with robot-assisted training for 10 min 2 years after left pons infarction. For closed-loop brain stimulation, we used transcranial oscillatory electrical current stimulation over the lesioned M1 foot area with 1.5 mA of DC offset and 0–3 mA of sine-wave formed currents triggered by the paretic heel contact to set the maximum current just before the swing phase (intervention A; two times repeated, A1 and A2). According to the N-of-1 study design, we also performed sham stimulation (intervention B) and control stimulation not targeting the swing phase (intervention C) combined with robot-assisted training in the order of A1-B-A2-C interventions. As a result, we found larger improvements in gait speed, the Timed Up and Go test result, and muscle strength after the A1 and A2 interventions than after the B and C interventions. After confirming the short-term effects, we performed an additional long-term intervention twice a week for 5 weeks, for a total of 10 sessions. Gait parameters also largely improved after long-term intervention. Gait-synchronized closed-loop brain stimulation combined with robot-assisted training targeting the swing phase of gait may promote the recovery of gait function in post-stroke patients. Further studies with a larger number of patients are necessary
    corecore